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Abstract—Information generated by people and the gadgets today 
has gone from deficient to abundant which has increased the 
complexity of data. The challenge is how to elicitate, manage and 
organize this big data. The actual thing is to find out which data is 
important, what to keep and what to discard, and where to keep this 
enormous amount of data. The volume of data gets expanded when 
data is linked with other, resulting in data integration. Big data is 
still viewed as conventional data which is not sufficient. It should 
focus on what value the data can create into analytics rather than 
what technology it brings.  Today due to digital convergence we have 
an opportunity and a challenge both to influence the creation to 
facilitate later linkage and to automatically link previously created 
data. This paper focuses on big data analytics, the challenges and 
opportunities it accelerates and how it could be magnified to base the 
analytics.  
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1. INTRODUCTION 

The potential of data-driven decision-making is accepted 
worldwide and there is growing buzz for the new discipline 
‘Big Data’. The age of big data has already begun. A joint 
study of 1144 IT and business professionals by IBM and the 
University of Oxford’s said Business School found a 70% 
increase between 2010 and 2012 in those who reported that 
using big data afforded them a “competitive economic 
advantage”. In 2014, worldwide data generation is estimated 
at a staggering 7ZB [1], and by 2018 only smart phones is 
expected to generate 2GB of data every month [2] since these 
smart phones are generating location and other data that keeps 
services running and ready to use. At the same time, the big 
data technology and services market is expected to grow at a 
40 percent compound annual growth rate (CAGR) – about 
seven times the rate of the overall ICT market – with revenues 
expected to reach USD 16.9 billion in 2015 [3]. Also, it is 
estimated that Google alone contributed 54 billion dollars to 
the US economy in 2009, thus there is currently a huge gap 
between its potential and its realization. Scientific research has 
been revolutionized by Big Data [10]. 

Today our daily lifestyle creates huge digital record, may be 
sharing our thoughts and opinions on Facebook, twitter or 
other social media, streaming a video, playing the latest game 
with friends or sharing our photos. The decision makers of all 
industries, researchers and scientists, would like to base their 

decisions and actions on this data.   The decisions may vary 
from  designing more competitive offers, prices and packages; 
recommending the most attractive offers to subscribers during 
the shopping and ordering process; communicating with users 
about their usage, spending and purchase options; configuring 
the network to deliver more reliable services; and monitoring 
QoE to proactively correct any potential problems. All these 
activities enable improved user experience, increased loyalty, 
the creation of smarter networks, and extended network 
functionality to facilitate progress toward the Networked 
Society. 

In 2010, the users and organizations stored around 13 Exabyte 
of new data which is over 50,000 times the data in the Library 
of Congress. The impending value of global personal location 
data for end-users is estimated to be $700 billion, and it can 
result in an up to 50% decrease in product development and 
assembly costs, according to a recent McKinsey report [11]. 
McKinsey predicts an equally great effect of Big Data in 
employment, where 140,000-190,000 workers with “deep 
analytical” experience will be needed in the US; furthermore, 
1.5 million managers will need to become data-literate. Not 
surprisingly, the recent PCAST report on Networking and IT 
R&D[12]identified Big Data as a “research frontier” that can 
“accelerate progress across a broad range of priorities.” Even 
popular news media now appreciates the value of Big Data as 
evidenced by coverage in the Economist [13], the New York 
Times [14] and National Public Radio [15, 16]. 

Big data analytics has the capacity to process any variety, 
volume and velocity of information and to derive an insight 
into data [5]. The 4 V’s of big data: volume, variety, velocity, 
and veracity [6]:  

1.1 Volume 

This refers to amount of data. Since digital data is growing 
fast and data storage technologies improved, we can store 
larger amounts of data more cheaply. This resulted in analysis 
of even older data that was usually discarded. 

1.2 Variety 

This refers to forms of data. In the recent past, data largely 
existed in static spreadsheets, but now-a-days the data formats 
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Therefore, the question arises: “How can one categorize these 
varied sources of data? “. The diverse and evidently complex, 
experts from various fields like finance, retail, media, and 
advertising describe data in three categories according to 
acquisition points and ownership:  

2.1.1 First party 

It means data owned by the business, collected about a 
business’ customers, for example, transactional data, 
demographic data collected directly from customers generally 
for commercial purposes, for either in-house analysis or sale 
to third parties. This data is closed. It is not publicly shared or 
freely available. First party data can be viewed as an output 
that may have value in its own right and can serve as a basis 
for proprietary competitive advantage. 

2.1.2 Second party 

It means derived data where ownership is uncertain like data 
collected in collaboration with another company. This data are 
shared between companies as per contractual agreement 
specifying a scope of time and behaviors. Ownership of this 
data is uncertain but generally the company collecting the data 
stores it. For example, Google AdWords data, how many page 
views, how many clicks, how many times a particular search 
term was entered. The nature of this data is also typically 
closed.  

2.1.3 Third party 

It means data collected and owned by different parties. For 
example: government datasets, credit scores and audience 
ratings. This data includes open or public data as well as data 
of a closed or commercial nature collected from the web thru 
web scraping or data collected and processed by data vendors. 
Third party data vendors package data according to client 
demand, providing information on specific target groups. 
Third party data is an often costly input. Business models then 
revolve around how to use such an input to create new 
products or enhance business efficiency in novel and 
innovative ways. 

2.2 Big data business models 

The business of big data is complex, with most companies 
engaging in multiple dimensions of collection, processing, and 
sale of data. Emerging in this market are “as a service” models 
in which companies provide software, platforms, analytics, or 
consulting “as a service,” engaging their customers in multiple 
ways. 

2.2.1 Monetizing first party data 

In the most advanced organizations, first party data is used to 
inform internal business decisions on an extremely fine-
grained scale. These data also inform decisions about 
products, pricing, promotions, stock keeping, and overall 
business strategy. While the primary business model for these 
companies is retail, first party data informs almost every 

significant decision. One obvious way to monetize proprietary 
first party data is to treat it like any other product and sell it to 
other parties. Thus, first party data is treated as an output in its 
own right. 

2.2.2 Data analytics as a service 

The value of data lies in the actions resulting from analysis 
and not in its intrinsic merits. Thus, a common business model 
is created for companies in the big data sphere are the 
provision of analytics as service where data analytics is part 
of the business model. In this model the analytics firm takes as 
an input its own proprietary data, data supplied by its client, or 
some third party source of data, and produces as an output a 
data summary, analysis, insight, advice, or some other product 
derived from that data. Analytics often result in reporting 
insights on a client's targeted audience segment based on 
aggregated behavioral data for particular groups. Since 
processing and analysis technologies are becoming less 
expensive and the consumers are more frequently using huge 
variety of data, big data analytics are also rapidly becoming 
available for personal use. Thus, a new variety of consumer-
facing analytics firms is emerging. For example: Mappings, a 
mobile application that allows users to report their levels of 
happiness and receive feedback, collects personal data, 
analyses it, and reports it in a usable form to users. 

2.2.3 Three distinct classes of big data business models- 

a. Data users 
These are organizations that use data either to inform business 
decisions, or as an input into other products and services. Such 
organizations faces questions like what data to be created, 
what data is needed externally, and how can this data be used 
to create value within the business? These businesses require 
the physical and human resources to take advantage of the 
data.  

b. Data suppliers 
These are organizations that either generate data that is of 
native value and therefore marketable or else serve a kind of 
brokerage role by providing access to an aggregation of first 
and third party data. Such organizations need not specialize in 
the supply of data and many organizations are finding that 
they hold data that is of considerable value when some third 
party puts it to a use other than that for which is was originally 
collected. The key questions are what data is available, what 
uses might that data have and for whom, and how should data 
be delivered to maximize its value? 

c. Data facilitators 
These organizations perform a range of services including 
advice on how to take advantage of big data, the provision of 
physical infrastructure, and the provision of outsourced 
analytics services. These organizations are playing important 
role during the current time of transition when a large number 
of firms are reorganizing to make data more central to their 
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declarative query and mining interfaces, scalable mining 
algorithms, and big-data computing environments. Challenges 
are: 
a. Creating automated Queries towards Big Data for 

content creation on websites, to populate hot-lists or 
recommendations, and to provide an ad hoc analysis of 
the value of a data set to decide whether to store or to 
discard it. 

b. Scaling complex query processing techniques to 
terabytes while enabling interactive response times is a 
major challenge. 

c. Establishing the missing coordination between database 
systems that host the data along with SQL querying 
procedures and with analytics packages that perform 
various forms of non-SQL processing, such as data 
mining and statistical analyses. This will benefit both 
expressiveness and performance of the analysis. 

3.5 Interpretation  

Once the effective analysis is done, the decision maker must 
interpret the analysis results which needs investigation of all 
the assumptions made and retracing the analysis. Challenges 
are: 
a. Errors can come in many forms: bugs in systems, models 

based on assumptions, results based on erroneous data. 
Thus decision makers don’t totally trust computer 
system and try to verify results themselves. This poses 
major challenge with Big Data due to its complexity. 

b. Users need to be able to see not just the results, but also 
understand how best to capture, store, and query 
provenance along with techniques to capture adequate 
metadata. This is too technical and many users to don’t 
grasp this completely.   

4. CONCLUSION 

This era belongs to big data and big data analytics is an 
emerging type of knowledge work offering plenty of 
opportunities for study and productivity improvements. 
However, many technical challenges discussed in this paper 
must be addressed before this potential can be realized fully. 
The challenges include not just the obvious issues of scale, but 
also heterogeneity, lack of structure, error-handling, privacy, 
timeliness, provenance, and visualization at all stages of the 
analysis pipeline from data acquisition to result interpretation. 
These technical challenges are common across a large variety 
of application domains, and therefore not cost-effective to 
address in the context of one domain alone. However, these 
challenges will require transformative solutions and following 
recommendations are suggested: Data must be central to 
business model, profit model should be clear, Strong business 
strategy paired with understanding of technology and Look for 
Low-Hanging Fruit. 
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